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ABSTRACT

 

This research investigates thermal buckling characteristics of rectangular panels subjected to different types of
humped temperature profile heating. Minimum potential energy and finite-element methods are used to calculate
the panel buckling temperatures. The two methods give fairly close thermal buckling solutions. “Buckling
temperature magnification factor of the first kind, 

 

η

 

” is established for the fixed panel edges to scale up the
buckling solution of uniform temperature loading case to give the buckling solution of the humped temperature
profile loading cases. Also, “buckling temperature magnification factor of the second kind, 

 

ξ

 

” is established for the
free panel edges to scale up the buckling solution of humped temperature profile loading cases with unheated
boundary heat sinks to give the buckling solutions when the boundary heat sinks are heated up.

 

NOMENCLATURE

Acronyms

 

BC boundary condition

JLOC joint location

SPAR Structural Performance and Resizing

TPS thermal protection system

 

Symbols

 

A

 

kl

 

Fourier coefficient of trial function for out-of-plane displacement 

 

w

 

, in.

 

A

 

ij

 

extensional stiffness of orthotropic plates, , , 

, , , lb/in.

 

AR

 

 =  

 

a/b

 

, plate aspect ratio

 

a

 

length of plate, in.

coefficient of characteristic equation

 

B

 

mn

 

Fourier coefficient of trial function for , in/in.

 

b

 

width of plate, in.

 

C

 

mn

 

Fourier coefficient of trial function for , in/in.

 

D

 

ij

 

bending stiffness of plate, , , , 

, , in-lb

 

D

 

Qx

 

, D

 

Qy

 

transverse shear stiffness in 

 

xz-

 

, 

 

yz-

 

planes, lb/in.

A11
tsEx

1 νxyνyx–
-------------------------= A12

tsνyxEx

1 νxyνyx–
-------------------------=

A21
tsνxyEy

1 νxyνyx–
-------------------------= A22

tsEy

1 νxyνyx–
-------------------------= A66 2tsGxy=

amnkl
ij

γ xz

γ yz

D11

ExIs

1 νxyνyx–
-------------------------= D12

νyxExIs

1 νxyνyx–
-------------------------= D21

νxyEyIs

1 νxyνyx–
-------------------------=

D22

EyIs

1 νxyνyx–
-------------------------= D66 2GxyIs=



 

2

 

E

 

Young’s modulus, lb/in

 

2

 

E

 

x

 

, 

 

E

 

y

 

Young’s modulus, lb/in

 

2

 

G

 

xy

 

shear modulus, lb/in

 

2

 

I

 

s

 

moment of inertia, per unit width, with respect to plate centroidal axis, , in

 

4

 

/in.

 

i

 

index, 1, 2, 3,....

 

j

 

index, 1, 2, 3,....

 

k

 

index, 1, 2, 3,....

 

l

 

index, 1, 2, 3,....

 

m

 

index, 1, 2, 3,...., number of buckle half waves in 

 

x

 

-direction

, , thermal forces, lb/in.

 

n

 

index,1, 2, 3,...., number of buckle half waves in 

 

y

 

-direction

 

T

 

temperature (measured from room temperature), ˚F

 

T

 

c

 

temperature for constant temperature profile heating, ˚F

 

T

 

m

 

material temperature

 

T

 

o

 

peak temperature of dome-shaped (or roof-shaped) temperature profile heating, ˚F

 

T

 

s

 

boundary heat sink temperature, ˚F

 

t

 

s

 

thickness of plate, in.

 

u x

 

-displacement, in.

 

v y

 

-displacement, in.

 

w out-of-plane displacement, in.

x, y, z rectangular Cartesian coordinates

α, αx, αy coefficient of thermal expansion, in/in-˚F

αxy coefficient of thermal shear distortion, in/in-˚F

, transverse shear strain in xz- and yz-planes, in/in.

ζ numerical factor in buckling equation written for specified panel edge condition

η , “buckling temperature magnification factor of the first kind” = buckling 

temperature  of dome temperature loading case (fixed or free support condition) 

divided by the buckling temperature  of uniform temperature loading case (fixed 

boundaries)

thermal buckling eigenvalue associated with constant temperature profile heating

thermal buckling eigenvalue associated with dome-shaped (or roof-shaped) profile heating

Poisson ratio

Is
1
12
------ts

3
=

N x
T

N y
T

N xy
T

γ xz γ yz

T o( )
cr

T c( )
cr

⁄=

T o( )
cr

T c( )
cr

λc

λo

ν
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ξ  “buckling temperature magnification factor of the second 

kind” = buckling temperature  of dome temperature loading case with any heat sink 

temperature  (free support condition) divided by the buckling temperature  of 

dome temperature loading case with zero heat sink temperature  (free support 

condition)

ρ density, lb/in3

σT tensile strength, lb/in2

σx stress in x-direction, lb/in2

σY yield stress, lb/in2

σy stress in y-direction, lb/in2

τ shear stress, lb/in2

( )cr critical value at buckling

INTRODUCTION

Hypersonic aircraft are subjected to severe aerodynamic heating during flights. To maintain the structural
integrity under high temperature environment, the vehicle structural design concepts of hypersonic flight vehicles
are different from those of low Mach number aircraft. Depending on the operating temperature range, vehicle
structures may be called “hot” structures or “warm” structures. The “hot” structures fabricated with high
temperature alloys can operate at elevated temperatures in the range of 1000 °F to 1500 °F. If fabricated with the
carbon/carbon composite material, the operating temperature of the “hot” structures could go as high as 3000 °F.
Typical candidate “hot” structural components for hypersonic flight vehicles are hat-stiffened panels fabricated
with either monolithic titanium alloys or metal-matrix composite materials; honeycomb sandwich panels
fabricated with super-alloy; and carbon/carbon composite elevon (or body flap).

The “warm” structures are fabricated with lightweight materials, such as aluminum, and can operate only up to
moderate temperature limit of 350 °F. The space shuttle orbiter is a good example of the “warm” structure. The
entire vehicle is protected with the thermal protection system (TPS) to shield the aluminum substructure from
overheating beyond the “warm” temperature limit. 

Hot structural panels are usually fastened to the cooler substructures that function as heat sinks because of less
heating. Thus, even under the uniform surface heat flux, the temperature distribution over the hot structural panels
will not be uniform but looks like camel-humped shape (refs. 1–3). This camel-humped shaped temperature
distribution is always observed in supported hot structural panels. The buckling behavior of the panel with heat
sinks is therefore quite different from the case without heat sinks. Earlier Ko extensively studied thermal buckling
problems of hot structural panels under uniform temperature profile heating (without heat sinks effects)
(refs. 4–10).

This report studies the thermal buckling behavior of rectangular panels under different types of
humped-shaped temperature profile heating to simulate the existence of the supporting boundary heat sink and also
studies the effect of the heat sink temperature on the panel buckling temperature. The results are compared to the
results of uniform temperature profile heating cases without the heat sink effect.

T o( )
cr

[ ]
Ts 0≠

T o( )
cr

[ ]
Ts 0=

⁄=

T o( )
cr

T s 0≠ T o( )
cr

T s 0=
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HUMPED TEMPERATURE PROFILES

Under uniform surface heating, because of the existence of the supporting cooler boundary heat sinks,
experimental data have shown that the temperature distribution over a hot structural panel is usually
flattened-dome shaped (fig. 1, ref. 1). For performing thermostructural analysis, the actual temperature profile may
be idealized with simple mathematical surfaces such as dome-shaped or roof-shaped temperature profiles
described in the following sections. 

Dome-Shaped Temperature Profile

The dome-shaped temperature profile for a rectangular panel (length a, width b, thickness ts) is described by
the following mathematical function:

(1)

where To is the peak temperature at the panel center and Ts is the boundary heat sink temperature (fig. 2).
Equation (1) gives a “sine-sine” surface elevated upward by an amount Ts (fig. 2). Keep in mind that the
temperatures in this report are the temperature differentials above the room temperature.

Equation (1) is the first-order approximation of the actual temperature profile (fig. 1). For more accurate
representation of the actual temperature profile, double Fourier series representation is necessary; however, this
representation is not the scope of the present report.

When the boundary temperature Ts goes to zero (fig. 3), equation (1) becomes:

(2)

In order to obtain closed-form buckling solutions by means of the minimum potential energy theory, the functional
form given by equation (2) is used for dome-shaped temperature loading.

For a special case of uniform temperature profile heating (fig. 4), equation (1) degenerates into:

(3)

Thermal buckling problems of rectangular sandwich panels under the constant temperature profile heating
[eq. (3), fig. 4] was analyzed earlier by Ko (refs. 4–7) using the minimum potential energy theory and
finite-element method.

Roof-Shaped Temperature Profile

The actual dome-shaped temperature profile (fig. 1) may also be approximated by a simple temperature
distribution surface called roof-shaped temperature profile (peak temperature To at the profile central flat zone and
boundary heat sink temperature Ts) (figs. 5 and 6). When , the roof-shaped temperature profile also
degenerates into uniform temperature profile (fig. 4). 

T x y,( ) T s T o T s–( ) πx
a

------ πy
b

------sinsin+=

T x y,( ) T o
πx
a

------ πy
b

------sinsin=

T x y,( ) T o T s T c= = =

T o T s=
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PROBLEMS INVESTIGATED

This report investigated thermal buckling behavior of rectangular panels (length a, width b, thickness ts)
heated under the dome-shaped (figs. 2 and 3) and roof-shaped (figs. 5 and 6) temperature profiles. The main
aspects of this research are:

1. To study the effect of the dome-shaped (or roof-shaped) temperature profile on the buckling behavior of the
rectangular panels with fixed edges. Then, the study will establish the “buckling temperature magnification
factor of the first kind” to scale up the buckling solution of uniform temperature profile heating case to give
the buckling solution of the dome-/roof-shaped temperature profile heating case.

2. To study the effect of the heat sink temperatures on the buckling temperatures of rectangular panels with
free edges under dome-shaped (or roof-shaped) temperature profile heating. Then, the study will establish
the “buckling temperature magnification factor of the second kind” to scale up the buckling solution of
dome (or roof) temperature loading case with unheated boundary heat sinks to give the buckling solutions
when the boundary heat sinks are heated up. 

FINITE-ELEMENT BUCKLING ANALYSIS

This research will use the Structural Performance and Resizing (SPAR) finite-element computer program (ref.
11) to conduct the linear elastic thermal buckling analysis of the rectangular panels. 

Panel Geometry

All the rectangular panels analyzed have thickness ts = 0.09 in. with the different dimensions in length a and
width b listed in Table 1.

Figure 7 shows the quarter model generated for the rectangular panel. The quarter model has 625 joint
locations (JLOCs) and 576 E43 four-node plate elements.

Material Properties

The rectangular panels are made of high temperature alloy Haynes® 230® (Haynes International, Koyomo,
Indiana) with the room temperature properties listed in Table 2.

Table 1. Dimensions of rectangular panels; ts = 0.09 in.

a, in. b, in. a/b

6 6 1.0
9 6 1.5

12 6 2.0
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Haynes 230 high temperature alloy was used in the fabrication of Hyper-X (X-43) hypersonic research vehicle
for Mach 7–10 mission (ref. 3). Appendix A gives the temperature-dependent material properties of Haynes 230
alloy.

Boundary Conditions

The following different panel boundary conditions were considered in the finite-element analysis:

1. 4S fixed — four edges simply supported, with no in-plane displacements [fig. 8(a)].

a. ,  everywhere except boundaries.

b. ,  everywhere in the panel.

2. 4S free — four edges simply supported and slides freely along the lubricated guides, which can have free
in-plane motions [fig. 8(b)].

3. 4C fixed — four edges clamped, with no in-plane displacements [fig. 9(a)].

a. ,  everywhere except boundaries.

b. ,  everywhere in the panel.

4. 4C free — four edges clamped and slides freely along the lubricated clamping guides, which can have free
in-plane motions [fig. 9(b)].

Thermal Loads

The thermal load inputs used for the dome (or roof) temperature loading and constant temperature loading are
as follows.

1. Dome-Shaped (or Roof-Shaped) Temperature Profile Heating

For the dome-shaped [eqs. (1) and (2), figs. 2 and 3] and roof-shaped (figs. 5 and 6) temperature load inputs to
the SPAR program for the eigenvalue calculations, the unit peak temperature  °F was used. The heat sink
temperature Ts was allowed to vary over the range  (i.e.,  = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0). Then the eigenvalue (scaling factor)  calculated from SPAR program will give the buckling
temperature , namely:

(4)

Table 2. Material properties of Haynes 230 alloy at room temperature.

E  lb/in2

0.31

ρ 0.324 lb/in3

α  in/in-°F

30.6 10
6

×

ν

7.0 10
6–

×

u x y,( )  0≠ v x y,( )  0≠

u x y,( ) 0= v x y,( ) 0=

u x y,( )  0≠ v x y,( )  0≠

u x y,( ) 0= v x y,( ) 0=

T o 1=
T s T o⁄ 0~1= T s T o⁄
λo

T o( )
cr

T o( )
cr

λo 1 λo=×=
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If the input peak temperature To is doubled (i.e.,  °F), then the calculated eigenvalue will be reduced to half
of  given in equation (4) because the product  remains constant.

The reason for using the whole range of  is to study the effect of the heat sink temperature Ts on
the panel buckling temperature  when the panel edges are free to move. Keep in mind that the panel
buckling temperature  will increase with the increasing heat sink temperature Ts because of relaxation of
thermal expansion constraint exerted on the panel by the boundary heat sink.

2. Uniform Temperature Profile Heating

As mentioned earlier, the uniform-temperature loading case (fig. 4) is a degenerative case of dome-shaped (or
roof-shaped) temperature profile heating. Temperature load of  ºF is chosen as input to all nodes of the
finite-element model so that the eigenvalue  calculated from SPAR program will give the buckling temperature

, namely:

(5)

This buckling solution is for the panels with fixed boundary supports. When the panel boundaries can have free
in-plane motions (free supports), the constant temperature loading case obviously can never induce thermal
buckling (i.e., buckling temperature goes to infinity). 

3. Material Property Iterations

In the calculations of buckling temperatures, material property iterations are required to obtain accurate
buckling temperatures. Namely, the material properties at certain assumed material temperature Tm must be
updated until Tm matches the calculated buckling temperature . Reference 12 discusses in detail this
iteration process. Usually it takes only two to three material iterations to yield accurate buckling temperatures.

BUCKLING TEMPERATURE MAGNIFICATION FACTORS 

As discussed later in this report, for the fixed supports (4S or 4C) [figs. 8(a) or 9(a)], the buckling temperature
 for the dome (or roof) temperature loading case is much higher than the buckling temperature  of

the uniform temperature loading case. Therefore, a “buckling temperature magnification factor of the first kind, η”
defined as:

(6)

will be used to indicate how many times the buckling temperature  of the dome (or roof) temperature
loading case (fixed supports) is magnified from the buckling temperature  of the uniform temperature
loading case with fixed supports (fundamental case).

In reality, the hot panel attempts to expand under heating; but its expansion is resisted by the cooler boundary
substructures (heat sinks) that expand less. This boundary constraint is the cause of thermal buckling of the panels.
Such substructure constraints will gradually relax as the substructures are heated up, resulting in higher panel
buckling temperature. In order to discover how the heat sink temperature Ts affects the panel buckling temperature

T o 2=
λo T o λo×( )

T s T o⁄ 0~1=
T o( )

cr
T o( )

cr

T c 1=
λc

T c( )
cr

T c( )
cr

λc 1 λc=×=

T c( )
cr

T o( )
cr

T c( )
cr

η
T o( )

cr

T c( )
cr

----------------=

T o( )
cr

T c( )
cr
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 for the dome (or roof) temperature loading case with free supports, another “buckling temperature
magnification factor of the second kind, ξ” defined as:

(7)

will be used to indicate how many times the buckling temperature  for the dome (or roof) temperature
loading case with free support (4S or 4C) is magnified when the heat sink temperature Ts increases from 
(no heat sink thermal expansion) to certain nonzero value  (with heat sink thermal expansion).

MINIMUM POTENTIAL ENERGY BUCKLING ANALYSIS

When the {u, v} displacements are zero everywhere in the plate including the boundaries (4S fixed-b and 4C
fixed-b cases), the dome-shaped temperature profile heating [eq. (2), fig. 3] will generate identical dome-shaped
biaxial stress distributions with no shear stresses. Because of this ideal condition, it is possible to obtain
closed-form buckling solutions for this particular case using the minimum potential energy theory.

Energy Equations

Strain energy associated with bending V1 may be written as (refs. 5 and 6):

(8)

and the strain energy associated with thermal loading V2 is given by:

(9)

The dome-shaped temperature loading functions may be expressed as follows (refs. 5 and 6):

(10)

(11)

(12)

The preceding thermal loading functions (10)–(12) hold only for the 4S fixed-b and 4C fixed-b cases
[i.e., u(x,y) = 0, v(x,y) = 0 everywhere]. 
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For other fixed panel cases under dome temperature heating, the in-plane displacements of panel interior points
are nonzero [i.e., u(x,y) ≠ 0, v(x,y) ≠ 0], and the thermal loads { , , } are complicated functions of {x,y};
and thus it will be too cumbersome to apply the minimum potential energy method. Therefore, SPAR was used to
obtain quick buckling solutions.

Deformation Functions

The deformation functions for the 4S fixed-b case and 4C fixed-b case may be expressed in the following
forms (refs. 5 and 6).

Case 1. Four edges simply supported (4S fixed-b case)

(13)

(14)

(15)

Case 2. Four edges clamped (4C fixed-b case)

(16)

(17)

(18)

Buckling Equations

Application of the minimum potential energy theory yields the following homogeneous simultaneous
characteristic equations (refs. 5 and 6) for each set of integral values {m, n} (or mode shape) written for orthotropic
rectangular panels under dome-shaped temperature profile heating [eq. (2)]:
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(19)

where the stiffness/geometry parameter Mmnkl is given by:

(20)

and where  are the coefficients of characteristic equations.

Appendix B gives functional expressions of , which is taken from Appendix C of reference 6 (or
Appendix A of ref. 7) with the loading terms containing {kx, ky} removed.

For the simply-supported edges (4S fixed-b case), the value of ζ in equation (20) is ζ = 32; and the thermal
forcing term Pmnkl in equation (19) has the following form (special integrals given in Appendix C were used in the
calculations). 

(21)

, 

For the clamped edges (4C fixed-b case), the value of ζ in equation (20) is ζ = 24, and Pmnkl in equation (19)
takes on the following form (special integrals given in Appendix C were used in the calculations). 
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For the unknown deflection coefficients Akl in equation (19) to have nontrivial solution, the determinant of the
coefficients of unknown Akl of simultaneous equations written out from equation (19) must be set to zero for
eigenvalue extractions. The largest eigenvalue (1/To) will then give the lowest critical buckling temperature (To)cr.

Appendix D shows the determinants of the coefficients of simultaneous equation (called buckling equations)
written out from equation (19) up to order 12 for the cases m ± n = even (symmetrical buckling) and m ± n = odd
(antisymmetrical buckling) for the 4S and 4C cases. The symmetrical buckling case (m ± n = even) gives the
lowest buckling temperature (To)cr associated with the lowest buckling mode.

Buckling Temperatures for Isotropic Cases

The purpose of the present buckling analysis is to study the effect of dome-shaped temperature profile heating
on the buckling of the rectangular panels and not the effect of material anisotropy. Therefore, only the isotropic
panels are considered. 

1. Simply-Supported Edges

For the simply-supported case (4S fixed-b case) ignoring the transverse shear effect, Mmnkl [eq. (20)] and Pmnkl
[eq. (21)] take on the following forms:

(23)

(24)

m ± k = even, n ± l = even

The first-order solution (m = n = k = l = 1) of the buckling temperature (To)cr for the dome-shaped heating may
be calculated through combining equations (19), (23), and (24) by setting m = n = k = l = 1.

(25)

For the constant temperature heating case, the first-order (m = 1, n = 1) buckling temperature (Tc)cr for the
isotropic panel can be calculated from equations (28)–(30) of reference 7. With the transverse shear effect
neglected, the first-order buckling temperature (Tc)cr for this case has the following form:
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(26)

Dividing equation (25) by equation (26) yields the buckling temperature magnification factor of the first kind
η for the simply-supported first-order case (m = n = k = l = 1) in a neat form:

(27)

that is independent of panel aspect ratio.

For the 4S case, the values of η based on the second and third-order buckling solutions (which depend on the
aspect ratio a/b) were also obtained. The RESULTS section presents these values.

2. Clamped Edges

For the clamped case (4C fixed-b case), the first-order solution (m = n = k = l = 1) for the “dome-shaped”
temperature case is:

(28)

(29)

The first-order solution (m = n = k = l = 1) of the buckling temperature (To)cr for the clamped panel under the
dome-shaped heating may be calculated by combining equations (19), (28), and (29) to yield:

(30)

The first-order solution (m = n = k = l = 1) for the constant temperature case calculated from equations
(28)–(30) of reference 7 gives:
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The ratio of equations (30) and (31) gives the buckling temperature magnification factor of the first kind η for
the 4C case first-order solution (m = n = k = l = 1) in a neat closed form as:

(32)

which, similar to the 4S case [eq. (27)], is also independent of panel aspect ratio. As discussed in a following
section, for the 4C case, the first-order buckling solution gives a quite accurate value of η. Therefore, higher order
values of η were not calculated.

RESULTS

The following sections present the results of the thermal buckling analyses of the rectangular plates under
different heating profiles.

Buckling Temperature Magnification Factors

Figures 10 and 11 show the buckled shapes of the isotropic square panel (a/b = 1) under different temperature
profile loading and under different boundary conditions. Notice that the panel buckling shapes are insensitive to
the temperature loading functions for each set of edge conditions.

Table 3 lists the buckling temperature magnification factor of the first kind  calculated
from SPAR program for the isotropic rectangular panels with different aspect ratios under dome-shaped
temperature profile heating with zero heat sink temperature [Ts = 0, eq. (2)].

Notice that η is insensitive to the change of panel aspect ratio a/b and that the 4S cases have slightly higher
values of η than the 4C cases.

In Table 3, the η values for the square sandwich panel (a/b = 1) are also shown in the parentheses. Those
values were calculated from the previous SPAR program developed for the buckling of sandwich panel (ref. 7).
Notice the proximity of the η values for solid and sandwich panels.

Table 3. Buckling temperature magnification factor η 
for rectangular plates under dome-shaped temperature 
profile heating; Ts = 0; fixed boundaries.

η

BC \ a/b 1 1.5 2

4S 1.9721 1.9603 1.9453
(2.0034)

4C 1.8035 1.7848 1.7320
(1.8299)

( ) Sandwich panel (ref. 7).

η
T o( )

cr

T c( )
cr

---------------- 3 15
2
π

2
×

64
2

------------------------ 1.6265= = =

η T o( )
cr

T c( )
cr

⁄=
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Table 4 compares the values of η calculated from the minimum potential energy theory and from the SPAR
program for the special case of square panel (a/b = 1) under the dome-shaped temperature profile heating [Ts = 0,
eq. (2), fig. 3], and with constraint u = v = 0 everywhere.

For the 4S case, the η values were hand calculated up to the third-order buckling solutions. The third-order
solution compares quite well with the SPAR solution with only 2.71 percent difference. Thus, higher order
solutions were not pursued. 

For the 4C case, the first-order solution is extremely good with only 1.70 percent difference compared with the
SPAR solution. Therefore, higher order solutions for η were not calculated.

Table 5 lists the buckling temperatures (To)cr and the values of buckling temperature magnification factors
{η, ξ} calculated for the simply-supported (4S fixed/free) square panel (a/b = 1) under shifted dome-shaped
temperature loading [eq. (1), fig. 2] under different heat sink temperatures Ts.

Table 4. Buckling temperature magnification factor η for square plate (a/b = 1) 
under dome-shaped temperature profile heating; Ts = 0; u = v = 0 everywhere.

η

BC Method Ko theory SPAR Percent difference

4S 2.4503*** 2.5185 2.71
(2.6394)** .... 4.80
(2.7758)* .... 10.22

4C 1.6265* 1.5993 1.70

* First-order solution.

** Second-order solution.

*** Third-order solution.
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Note that for the 4S fixed edges, the value of η decreases with the increasing heat sink temperature Ts. For the
4S free edge case, ξ increases with the increasing heat sink temperature Ts. When Ts/To = 1, the case degenerated
into the uniform temperature loading case for which the buckling temperature goes to infinity for the 4S free edge
case (i.e., thermal buckling does not occur).

It must be mentioned that for the actual hot sandwich panel (ref. 1) Ts/To = 0.45 and for the HYPER-X wing
panel (ref. 3) Ts/To = 0.54.

Table 6 lists the buckling temperatures (To)cr and the values of buckling temperature magnification factors
{η, ξ} calculated for the clamped (4C fixed/free) square panel (a/b = 1) under shifted dome-shaped temperature
loading [eq. (1), fig. 2] and under different heat sink temperatures Ts.

Table 5. Buckling temperatures of square plate (a/b = 1) under
dome-shaped temperature profile heating; 4S fixed and free cases.

4S Fixed 4S Free

Ts/To (To)cr, °F η (To)cr , °F ξ

0.0 80 2.00 515 1.00
0.1 73 1.83 568 1.10
0.2 67 1.68 635 1.23
0.3 62 1.55 718 1.39
0.4 57 1.43 821 1.59
0.5 54 1.35 960 1.86
0.6 50 1.25 1,175 2.28
0.7 47 1.18 1,500 2.91
0.8 45 1.13 2,070 4.02
0.9 42 1.05 (4,213) 8.18
1.0* 40 1.00

* Uniform temperature loading.
( ) Exceeded melting range 2,375 °F~2,500 °F of Haynes 230 alloy.

∞ ∞
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Note that for the 4C fixed case, similar to the 4S fixed case, value of η decreases with the increasing heat sink
temperature To. For the 4C free case, the values of ξ are very close to the corresponding ξ value of 4S free case
(Table 5). Again, when Ts reaches To (i.e., Ts/To = 1), the case degenerated into the uniform temperature loading
case for which the buckling temperature goes to infinity for the 4C free case (i.e., no thermal buckling).

Table 7 lists the buckling temperatures (To)cr and the values of buckling temperature magnification factors
{η, ξ} calculated for the simply-supported (4S fixed/free) square panel (a/b = 1) under shifted roof-shaped
temperature loading (fig. 5) under different heat sink temperatures Ts.

Table 6. Buckling temperatures of square plate (a/b = 1) under
dome-shaped temperature profile heating; 4C fixed and free cases.

4C Fixed 4C Free

Ts/To (To)cr , °F η (To)cr , °F ξ

0.0 194 1.81 810 1.00
0.1 180 1.68 886 1.09
0.2 167 1.56 982 1.20
0.3 156 1.46 1,110 1.34
0.4 147 1.37 1,272 1.57
0.5 138 1.29 1,480 1.83
0.6 130 1.21 1,770 2.19
0.7 124 1.16 2,302 2.84
0.8 118 1.10 (3,581) 4.42
0.9 112 1.05 (6,907) 8.53
1.0* 107 1.00

* Uniform temperature profile heating.
( ) Exceeded melting range 2,375 °F~2,500 °F of Haynes 230 alloy.

∞ ∞
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Table 8 lists the buckling temperatures (To)cr and the values of buckling temperature magnification factors
{η, ξ} calculated for the clamped (4C fixed/free) square panel (a/b = 1) under shifted roof-shaped temperature
loading (fig. 5) under different heat sink temperatures Ts. 

Table 7. Buckling temperatures of square plate (a/b = 1) under
roof-shaped temperature profile heating; 4S fixed and free cases.

4S Fixed 4S Free

Ts/To (To)cr , °F η (To)cr , °F ξ

0.0 51 1.28 622 1.00
0.1 50 1.25 690 1.11
0.2 48 1.20 767 1.23
0.3 47 1.18 860 1.38
0.4 46 1.15 985 1.58
0.5 45 1.13 1,160 1.86
0.6 44 1.10 1,410 2.27
0.7 43 1.08 1,764 2.84
0.8 42 1.05 (2,587) 4.16
0.9 41 1.03 (5,174) 8.32
1.0* 40 1.00

* Uniform temperature profile heating.
( ) Exceeded melting range 2,375 °F~2,500 °F of Haynes 230 alloy.

Table 8. Buckling temperatures of square plate (a/b = 1) under
roof-shaped temperature profile heating; 4C fixed and free cases.

4C Fixed 4C Free

Ts/To (To)cr, °F η (To)cr, °F ξ

0.0 132 1.23 1,125 1.00
0.1 129 1.21 1,235 1.10
0.2 126 1.18 1,370 1.22
0.3 123 1.15 1,520 1.35
0.4 121 1.13 1,720 1.53
0.5 118 1.10 1,980 1.76
0.6 116 1.08 (2,501) 2.22
0.7 113 1.06 (3,335) 2.96
0.8 111 1.04 (5,002) 4.45
0.9 109 1.02 (10,004) 8.89
1.0* 107 1.00

* Uniform temperature loading.

( ) Exceeded melting range 2,375 °F~2,500 °F of Haynes 230 alloy.

∞ ∞

∞ ∞
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Figures 12 and 13, respectively, show the buckling temperatures (To)cr (data from tables 5–8) plotted as
functions of normalized heat sink temperature Ts/To for the fixed and free edge cases to illustrate entirely different
buckling behavior of the fixed and free edge cases. Note from figure 12 that for the fixed edges, the buckling
temperatures of the roof-shaped temperature profile case are much lower than the dome-shaped temperature profile
case for each panel support condition. However, for the free edges (fig. 13), the reverse is true.

Figure 14 shows the buckling temperature magnification factors {η, ξ} (data from tables 5–8) plotted as
functions of normalized heat sink temperature Ts/To for easy visualization of the shapes of {η, ξ} curves. Note that
η values for the roof case are much lower than the dome case for the same support condition. For the free edge
cases, the ξ curves for different loading and edge support conditions stay very close.

In-Plane Deformations

When the panel is constrained only at the four boundaries, the panel interior points can have in-plane free
motions if the temperature loading is nonuniform. Figure 15 shows the in-plane deformed shapes of the square
panel under dome-shaped [fig. 15(a)] and roof-shaped [fig.15(b)] temperature loading cases. As expected, the
panel center regions expand more than the panel boundary regions as the result of heating temperature profiles.
Figures 16 and 17, respectively, show the distributions of in-plane displacements u(x,y) and v(x,y) for the
dome-shaped temperature loading. Note that {u, v} reach a maximum at points between the panel center and the
boundaries. For the roof-shaped temperature profile case (figs. 18 and 19), the maximum points of {u, v} migrated
toward the panel center.

Thermal Stresses

Figures 20 and 21, respectively, show the compressive thermal stresses { , } induced in a fixed square
panel (a/b = 1) under the unit dome-shaped temperature profile heating [To = 1 °F, Ts = 0; eq. (2), fig. 3]. Even
though the loading temperature profile is dome shaped, the distributions of thermal stresses { , } are
airplane-hanger shaped because  and  within the fixed boundaries. Figure 22 shows the
distribution of shear stress τxy which is wavy shaped. The peak magnitudes of the shear stress occur at the
boundaries and near the panel corners.

For the roof-shaped temperature profile heating (To = 1 °F, Ts = 0) (fig. 6), the distributions of { , } are
roughly trapezoidal hanger-shaped (figs. 23 and 24). The shear stress distribution (fig. 25) exhibits zero shear
stress near the panel center region and a maximum shear near each panel corner.

If the in-plane displacements {u, v} are constrained everywhere in the panel including the edges
[i.e., u(x,y) = v(x,y) = 0], the resulting distributions of the biaxial stresses { , } will be dome-shaped just like
the input dome temperature distribution (figs. 26 and 27), and the in-plane shear stress τxy diminishes (τxy = 0). For
the case of roof-shaped temperature profile (figs. 28 and 29), the distributions of the biaxial stresses { , }
reflect the input temperature profile.

Table 9 lists the fundamental thermal stresses induced in the fixed square panel (a/b = 1) by the dome-shaped
(or roof-shaped) temperature loading (To = 1 °F) with zero heat sink temperature (Ts = 0).

σx σy

σx σy
u x y,( ) 0≠ v x y,( ) 0≠

σx σy

σx σy

σx σy
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Note that by setting u(x,y) = v(x,y) = 0 everywhere in the panel including the boundaries, the peak magnitudes
of the biaxial stresses {σx, σy} were raised respectively by 59 percent and 20 percent for the dome- and
roof-shaped temperature profile cases.

CONCLUDING REMARKS

Thermal buckling characteristics of rectangular panels subjected to dome-shaped and roof-shaped temperature
profile heating were investigated using the finite-element method and the minimum potential energy method. The
key results include:

1. “Buckling temperature magnification factor of the first kind, η” was established to scale up the buckling
solution of uniform temperature loading case to give the buckling solution of the dome-shaped (or
roof-shaped) temperature loading cases. Also, “buckling temperature magnification factor of the second
kind, ξ” was established to scale up the buckling solution of dome temperature loading case with unheated
boundary heat sinks to give the buckling solutions when the boundary heat sinks are heated up. 

2. For the fixed boundary cases when the panel interior in-plane motions are not constrained ( , 
except boundaries), the panel buckling temperatures under dome-shaped temperature loading are
practically twice the buckling temperatures of the uniform temperature loading cases.   

3. For simply-supported case (4S fixed, u = v = 0 everywhere) under the dome-shaped temperature profile
heating, the third-order solution of the “buckling temperature magnification factor of the first kind, η”
calculated from the minimum potential energy theory, agrees fairly well with the η value calculated from
the finite-element method. The solution difference is only 2.71 percent.

4. For the clamped case (4C fixed, u = v = 0 everywhere) under dome-shaped temperature profile heating, the
first-order solution of minimum potential energy gives quite accurate value of η with only1.70 percent
difference from the finite-element solution.

5. For the fixed boundary case when the panel interior points can have free in-plane motions ( , 
except boundaries), the distribution profiles of the compressive stresses {σx, σy} under the dome-shaped
(or roof-shaped) temperature loading have airplane-hanger-like shapes.

6. For the fixed boundary case when the panel in-plane motions are constrained everywhere (u = v = 0
everywhere), the distribution profiles of the compressive stresses {σx, σy} take on the dome shape (or roof
shape) similar to the input dome-shaped (or roof-shaped) temperature profile.

7. The “buckling temperature magnification factor of the first kind, η” associated with the dome-shaped
temperature profile heating is much greater than that for the roof-shaped temperature profile heating case
for both 4S and 4C fixed edge conditions.

Table 9. Peak thermal stresses {σx, σy, τxy} induced in square plate (a/b = 1) under
dome-shaped and roof-shaped temperature loads; To = 1 °F; Ts = 0; fixed boundaries.

Constraints of {u, v} Heating σx, lb/in2 σy, lb/in2 τxy, lb/in2

u = 0, v = 0, edges only Dome –189.26 –189.26 31.27
Roof –256.38 –256.38 48.66

u = 0, v = 0, everywhere Dome –301.05 –301.05 0.00
Roof –306.77 –306.77 0.00

u 0≠ v 0≠

u 0≠ v 0≠
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8. The “buckling temperature magnification factor of the second kind, ξ” associated with the dome-shaped
and roof-shaped temperature profile heating are very close for 4S and 4C free edge conditions. 

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, California, April 3, 2002
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APPENDIX A
TEMPERATURE-DEPENDENT MATERIAL PROPERTIES OF

HAYNES 230 ALLOY

Temperature-dependent material properties of Haynes 230; ρ = 0.324 lb/in3.

T, °F , lb/in2 , lb/in2 , lb/in2 , in/in-°F ν*

70 30.6 125.4 57.4 7.0 0.310
200 30.1 (122.2) (55.0) 7.1 0.311
400 29.3 (117.3) (51.3) 7.2 0.315
600 28.3 (112.3) (47.7) 7.4 0.318
800 27.3 (107.4) (44.0) 7.6 0.321

1000 26.4 102.5 40.3 7.9 0.324
1200 25.3 97.7 39.5 8.1 0.330
1400 24.1 87.7 42.5 8.3 0.332
1600 23.1 63.1 37.3 8.6 0.334
1800 21.9 35.2 21.1 8.9 0.340
2000 20.7* 19.5 10.8 9.2* 0.343

* Estimated.
( ) Interpolated.

E 10
6

× σT 10
3

× σY 10
3

× α 10
6–

×
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APPENDIX B
COEFFICIENTS OF CHARACTERISTIC EQUATIONS

The characteristic coefficients  appearing in equation (20) are defined in the following for different
indicial and edge conditions (refs. 6, 7).

Case 1: 4S condition

1. m = k, n = l
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2. , 
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Case 2: 4C condition
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2. m = k = 1, 

(B-4)

3. , n = l = 1

(B-5)
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(B-6)

5. m = k = 1, n – l = 2

(B-7)

6. , 
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7. m – k = 2, n = l = 1

(B-9)

8. m – k = 2, 

(B-10)
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9. m – k = 2, n – l = 2

(B-11)
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APPENDIX C
TABLE OF SPECIAL INTEGRALS 

Different types of integrals are needed to carry out the integration of strain energy expression associated with
the dome-shaped temperature profile heating.

Special Integrals Needed for 4S Case:

; m = k

; n = l

 ;  m ± k = even

  ; n ± l = even

Special Integrals Needed for 4C Case:              
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m ± k = even

m ± k = even

n ± l = even

n ± l = even

n ± l = even

n ± l = even

n ± l = even
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Case 1: 4S condition

m ± n = even (symmetric buckling)

Akl→ A11 A13 A22 A31 A15 A24 A33 A42 A51 A35 A44 A53

m=1, n=1 P1113 0 P1131 P1115 0 P1133 0 P1151 P1135 0 P1153

m=1, n=3 0 P1331 P1315 0 P1333 0 P1351 P1335 0 P1353

m=2, n=2 0 0 P2224 0 P2242 0 0 P2244 0

m=3, n=1 P3115 0 P3133 0 P3151 P3135 0 P3133

m=1, n=5 0 P1533 0 P1551 P1535 0 P1553

m=2, n=4 0 P2442 0 0 P2444 0 = 0

m=3, n=3 0 P3351 P3335 0 P3353

m=4, n=2 Symmetry 0 0 P4244 0

m=5, n=1 P5135 0 P5153

m=3, n=5 0 P3553

m=4, n=4 0

m=5, n=3

M1111
T o

----------------- P1111+

M1313
T o

----------------- P1313+

M2222
T o

----------------- P2222+
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----------------- P3131+
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(D-1)
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Case 1: 4S condition

m ± n = odd (antisymmetric buckling)

Akl→ A12 A21 A14 A23 A32 A41 A16 A25 A34 A43 A52 A61

m=1, n=2 0 P1214 0 P1232 0 P1216 0 P1234 0 P1252 0

m=2, n=1 0 P2123 0 P2141 0 P2125 0 P2143 0 P2161

m=1, n=4 0 P1432 0 P1416 0 P1434 0 P1452 0

m=2, n=3 0 P2341 0 P2325 0 P2343 0 P2361

m=3, n=2 0 P3216 0 P3234 0 P3252 0

m=4, n=1 0 P4125 0 P4143 0 P4161 = 0

m=1, n=6 0 P1634 0 P1652 0

m=2, n=5 Symmetry 0 P2543 0 P2561

m=3, n=4 0 P3452 0

m=4, n=3 0 P4361

m=5, n=2 0

m=6, n=1
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T o
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M6161
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(D-2)
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Case 2: 4C condition

m ± n = even (symmetric buckling)

Akl→ A11 A13 A22 A31 A15 A24 A33 A42 A51 A35 A44 A53

m=1, n=1 0 P1115 0 0 P1151 P1135 0 P1153

m=1, n=3 0 0 0 P1351 0 P1353

m=2, n=2 0 0 0 0 0 0

m=3, n=1 P3115 0 0 P3135 0

m=1, n=5 0 0 P1551 0 P1553

m=2, n=4 0 0 0 = 0

m=3, n=3 0 0

m=4, n=2 Symmetry 0 0 0

m=5, n=1 P5135 0

m=3, n=5 0

m=4, n=4 0

m=5, n=3
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T o

----------------- P1335+

M2222
T o

----------------- P2222+
M2224

T o
----------------- P2224+

M2242
T o

----------------- P2242+
M2244

T o
----------------- P2244+

M3131
T o

----------------- P3131+
M3133

T o
----------------- P3133+

M3151
T o

----------------- P3151+
M3153

T o
----------------- P3153+

M1515
T o

----------------- P1515+
M1533

T o
----------------- P1533+

M1535
T o

----------------- P1535+

M2424
T o

----------------- P2424+
M2442

T o
----------------- P2442+

M2444
T o

----------------- P2444+
M2453

T o
----------------- P2453+

M3333
T o

----------------- P3333+
M3351

T o
----------------- P3351+

M3335
T o

----------------- P3335+
M3353

T o
----------------- P3353+

M4242
T o

----------------- P4242+
M4244

T o
----------------- P4244+

M5151
T o

----------------- P5151+
M5153

T o
----------------- P5153+

M3535
T o

----------------- P3535+
M3553

T o
----------------- P3553+

M4444
T o

----------------- P4444+

M5353
T o

----------------- P5353+

(D-3)
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Case 2: 4C condition

m ± n = odd (antisymmetric buckling)

Akl→ A12 A21 A14 A23 A32 A41 A16 A25 A34 A43 A52 A61

m=1, n=2 0 0 0 P1216 0 0 P1252 0

m=2, n=1 0 0 0 P2125 0 0 P2161

m=1, n=4 0 0 0 0 P1452 0

m=2, n=3 0 0 0 0 P2361

m=3, n=2 0 P3216 0 0 0

m=4, n=1 0 P4125 0 0 = 0

m=1, n=6 0 0 P1652 0

m=2, n=5 Symmetry 0 0 P2561

m=3, n=4 0 0

m=4, n=3 0

m=5, n=2 0

m=6, n=1

M1212
T o

----------------- P1212+
M1214

T o
----------------- P1214+

M1232
T o

----------------- P1232+
M1234

T o
----------------- P1234+

M2121
T o

----------------- P2121+
M2123

T o
----------------- P2123+

M2141
T o

----------------- P2141+
M2143

T o
----------------- P2143+

M1414
T o

----------------- P1414+
M1432

T o
----------------- P1432+

M1416
T o

----------------- P1416+
M1434

T o
----------------- P1434+

M2323
T o

----------------- P2323+
M2341

T o
----------------- P2341+

M2325
T o

----------------- P2325+
M2343

T o
----------------- P2343+

M3232
T o

----------------- P3232+
M3234

T o
----------------- P3234+

M3252
T o

----------------- P3252+

M4141
T o

----------------- P4141+
M4143

T o
----------------- P4143+

M4161
T o

----------------- P4161+

M1616
T o

----------------- P1616+
M1634

T o
----------------- P1634+

M2525
T o

----------------- P2525+
M2543

T o
----------------- P2543+

M3434
T o

----------------- P3434+
M3452

T o
----------------- P3452+

M4343
T o

----------------- P4343+
M4361

T o
----------------- P4361+

M5252
T o

----------------- P5252+

M6161
T o

----------------- P6161+

(D-4)
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Figure 1. Measured temperature distribution in upper surface of titanium honeycomb-core sandwich panel, heated
on upper side at 10 °F/sec heating rate, with four edges supported by test fixtures (heat sink) (ref. 1).
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Figure 2. Shifted dome-shaped temperature profile heating ( ).Ts 0≠
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Figure 3. Dome-shaped temperature profile heating ( ).Ts 0=
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Figure 4. Uniform temperature profile heating ( ).To Ts Tc constant= = =
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Figure 5. Shifted roof-shaped temperature profile heating ( ).Ts 0≠
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Figure 6. Roof-shaped temperature profile heating ( ).Ts 0=
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Figure 7. Quarter panel finite-element model for rectangular panel.
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Figure 8. Two types of boundary conditions for simply-supported edges.
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Figure 9. Two types of boundary conditions for clamped edges.
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(a) Uniform temperature profile heating.

(b) Dome-shaped temperature profile heating.

(c) Roof-shaped temperature profile heating.

Figure 10. Buckled shapes of square panel ( ) under different temperature profile heating; 4S fixed edge
support conditions; .
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(c) Roof-shaped temperature profile heating.

Figure 11. Buckled shapes of square panel ( ) under different temperature profile heating; 4C fixed edge
support conditions; .
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(b) Dome-shaped temperature profile heating.

(a) Uniform temperature profile heating.
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Figure 12. Plots of buckling temperatures (
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o
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cr 

 

as functions of boundary heat sink temperature 
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 for different
temperature profile heating; fixed cases.
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Figure 13. Plots of buckling temperatures (
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o

 

)

 

cr 

 

as functions of boundary heat sink temperature 
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 for different
temperature profile heating; free cases.
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Figure 14. Plots of buckling temperature magnification factors of the first and the second kinds  as
functions of boundary heat sink temperature 
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(a) Dome-shaped temperature profile heating.
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(b) Roof-shaped temperature profile heating.

Figure. 15. In-plane deformed shape of square panel under different temperature profile heating; four edges fixed;
,  at panel interior; half panel plot.u x y,( ) 0≠ v x y,( ) 0≠
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Figure 16. Distribution of 

 

x

 

-displacement 

 

u

 

(

 

x

 

, 

 

y

 

) in square panel ( ) under dome-shaped temperature
profile heating;  °F; 4S fixed; ,  at panel interior.
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Figure 17. Distribution of 

 

y

 

-displacement 

 

v

 

(

 

x

 

, 

 

y

 

) in square panel ( ) under dome-shaped temperature
profile heating;  °F; 4S fixed; ,  at panel interior.
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Figure 18. Distribution of 

 

x

 

-displacement 

 

u

 

(

 

x

 

, 

 

y

 

) in square panel ( ) under roof-shaped temperature profile
heating;  °F; 4S fixed; ,  at panel interior.
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Figure 19. Distribution of 

 

y

 

-displacement 

 

v

 

(

 

x

 

, 

 

y

 

) in square panel ( ) under roof-shaped temperature profile
heating;  °F; 4S fixed; ,  at panel interior.
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Figure 20. Distribution of  in square panel ( ) under dome-shaped temperature profile heating;
 °F; 4S fixed; ,  at panel interior.
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Figure 21. Distribution of  in square panel ( ) under dome-shaped temperature profile heating;
 °F; 4S fixed; ,  at panel interior.
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Figure 22. Distribution of  in square panel ( ) under dome-shaped temperature profile heating;
 °F; 4S fixed; ,  at panel interior.
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Figure 23. Distribution of  in square panel ( ) under roof-shaped temperature profile heating;
 °F; 4S fixed; ,  at panel interior.
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Figure 24. Distribution of  in square panel ( ) under roof-shaped temperature profile heating;
 °F; 4S fixed; ,  at panel interior.
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Figure 25. Distribution of  in square panel ( ) under roof-shaped temperature profile heating;
 °F; 4S fixed; ,  at panel interior.
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Figure 26. Distribution of  in square panel ( ) under dome-shaped temperature profile heating;
 °F; 4S fixed;  everywhere.
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Figure 27. Distribution of  in square panel ( ) under dome-shaped temperature profile heating;
 °F; 4S fixed;  everywhere.
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Figure 28. Distribution of  in square panel ( ) under roof-shaped temperature profile heating;
 °F; 4S fixed;  everywhere.
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Figure 29. Distribution of  in square panel ( ) under roof-shaped temperature profile heating;
 °F; 4S fixed;  everywhere.
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